ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

Owner of the Declaration	Knauf Insulation				
Programme holder	Institut Bauen und Umwelt e.V. (IBU)				
Publisher	Institut Bauen und Umwelt e.V. (IBU)				
Declaration number	EPD-KNI-20160050-CBB1-EN				
ECO EPD Ref. No.	ECO-00000406				
Issue date	4/12/2016				
Valid to	4/11/2021				

Mineral Wool 034-035 Slabs MW 35, Mineral Wool 35, Mineral Wool KP 035, Mineral Wool KP 034 with ECOSE® Technology

Knauf Insulation

www.bau-umwelt.com / https://epd-online.com

General Information

Knauf Insulation

Programme holder

IBU - Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany

Declaration number EPD-KNI-20160050-CBB1-EN

This Declaration is based on the Product Category Rules: Mineral insulating materials, 07.2014

(PCR tested and approved by the SVR)

Issue date 4/12/2016

Valid to 4/11/2021

mennanes

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)

Mann

Dr. Burkhart Lehmann (Managing Director IBU)

Product

Product description

Knauf Insulation manufactures mineral wool insulation products such as MW 35, Mineral Wool 35, Mineral Wool KP 035 and Mineral Wool KP 034. They are available in the form of slabs or rolls. The density for mineral wool products ranges from 10 to 85 kg/m³. In general mineral wool products consists of >= 92% inert material. The inert part is made of recycled materials (up to 80% of the composition) and mainly sand and dolomite.

The remaining <= 8% are made of binder components. At Knauf Insulation, the binder used for Mineral Plus products is the ECOSE binder whose origin is plant starch.

Mineral Wool 034-035 slabs are products unfaced and they are used for their thermal, acoustical and fire characteristics. A representative product out of a particular group of products was selected for the calculation.

For the placing on the market of construction products in the European Union and EFTA (with the exception of Switzerland) /Regulation (EU) No 305/2011/ applies. The products need a Declaration of performance (DoP) taking into consideration the harmonized product standard /EN 13162/ and the CE-mark /Regulation (EC) No 765/2008/.

Mineral Wool 034-035 Slabs with ECOSE

Owner of the Declaration Knauf Insulation rue E. Franqui, 7 1435 Mont-Saint-Guibert Belgium

Declared product / Declared unit

1 m³ of Mineral Plus 037 slabs

Scope:

Mineral Wool 034-035 slabs are insulation product unfaced. They are manufactured in the form of slabs and comply with the requirements of /EN 13162/. The thickness is ranging from 40 mm to 240 mm. The manufacturing company is Knauf Insulation plants Vise (Belgium) and Lannemezan (France).The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification

The CEN Norm /EN 15804/ serves as the core PCR Independent verification of the declaration

according to /ISO 14025/

internally x externally

Matthias Schulz (Independent verifier appointed by SVR)

Application

Main applications for Mineral Wool 034-035 slabs are in external walls (ventilated façade, metal cladding and timber frame), pitched roof, internal partition and suspended ceilings. For the applications and use national regulations apply, in Germany the /Allgemeine bauaufsichtliche Zulassung Z-23.15-1461/ (building inspection approval) issued by the Deutsches Institut für Bautechnik (DIBt), Berlin.

Technical Data

Mineral Wool 034-035 slabs and their technical characteristics meet a number of technical requirements. The most important ones are summarized in the table here below, which also includes references to testing methods.

Technical characteristics

Name	Value	Unit
Thermal conductivity /EN 12667/	0.034	W/(mK)
Thermal conductivity /EN 12667/	0.035	w/(mK)
Water vapour diffusion resistance factor /EN 13162/	1	-
Gross density /EN 1602/	18 - 21	kg/m ³
Longit. air-diffusion resist. /EN	>=5	kNs/m^4

29053/		
Water absorption Wp /EN 1609/	< 1	kg/m²
Water absorption Wlp /EN 12087/	< 3	kg/m²
Reaction to fire /EN 13501-1/	A1	-
Specific heat capacity /EN ISO 10456/	850	J/kgK
Acoustic absorption	not relevant	
Compression strength/resistance	not relevant	

Base materials / Ancillary materials

Mineral Wool is an insulation material of mostly inorganic origin intended for thermal and

LCA: Calculation rules

Declared Unit

The declared unit is 1 m³ of mineral wool. The density used for the calculation of the LCA is 19.5 kg/m³.

Declared unit

Name	Value	Unit
Declared unit	1	m ³
Gross density	19.5	kg/m ³
Conversion factor to 1 kg	0.05128	-

System boundary

The system boundary of the EPD follows the modular approach defined by /EN 15804/.

The type of EPD is cradle to gate - with options.

List and explanation of the modules declared in the EPD.

The product stage (A1-A3) includes:

- A1 - raw material extraction and processing, processing of secondary material input (e.g. recycling processes),

- A2 transport to the manufacturer and
- A3 manufacturing.

This includes provision of all materials, products and energy, packaging processing and their transport, as well as waste processing up to the end-of waste state or disposal of final residues during the product stage. The LCA results are given in an aggregated form for the product stage, meaning that the modules A1, A2 and A3 are considered as **a unique module A1-A3**.

The construction process stage includes:

- A4 transport to the construction site and
- A5 installation into the building.

The transport to the building site (A4) is included in the LCA calculation. The average transport distance is assumed to be 600 km with a truck capacity utilization of 50%.

Module A5 has been included in this EPD with a loss of 2% on construction site. The treatment of the

acoustic insulation, as well as for fire prevention in construction as well as industry. Raw materials used in the production of Mineral Plus are sand, limestone, soda ash and high level of recycled materials (up to 80%). A bio-based binder, ECOSE, is spread on the fibers which polymerisation contributes to fix the product dimensions. The cured binder bonds the fibres together thus providing the necessary mat stability and mechanical strength.

Reference service life

The RSL or durability of Mineral Wool 034-035 is as long as the lifetime of the building in which it is used.

packaging waste after the installation of the product has also been considered.

The use stage.

Because they are specific for the building, its use and location, none of the modules related to the building fabric (B1-B5) nor the operation of the building (B6 and B7) have been taken into account in this EPD.

The end-of-life stage includes:

- C1 de-construction, demolition,
- C2 transport to waste processing,
- C3 waste processing for reuse, recovery and/or recycling and
- C4 disposal.

This includes provision of all transports, materials, products and related energy and water use, but only modules C2 and C4 are reported, as they are considered the most relevant scenarios for mineral wool products.

Although mineral wool products from Knauf Insulation are partly recycled at end-of-life, there is not yet an established collection system and as such the assumption chosen in this study,100% landfilled after the use phase, is the most conservative approach.

Module D includes re-use, recovery and/or recycling potentials.

According to /EN 15804/, any declared benefits and loads from net flows leaving the product system not allocated as co-products and having passed the end-of waste state shall be included in module D. Benefits and loads are considered for the packagings, so module D is included in the background model.

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

LCA: Scenarios and additional technical information

Unit

The following technical information can be used for the development of specific scenarios in the context of a building assessment.

Transport to the building site (A4)	
Namo	Valuo	Ī

Litres of fuel	0.0025	l/100km
Transport distance	600	km
Capacity utilisation (including empty runs)	50	%
Gross density of products transported	19.5	kg/m³

3

Installation into the building (A5)

(,,)								
Name	Value	Unit						
Auxiliary	0	kg						
Water consumption	0	m ³						
Other resources	0	kg						
Electricity consumption	0	kWh						
Other energy carriers	0	MJ						
Material loss Mineral wool	0.428	kg						
Output substances following								
waste treatment on site	1.5	kg						
packagings		_						
Dust in the air	0	kg						
VOC in the air	0	kg						

Reference service life

alue	Unit
50	а
	50

End-of-life (C1 - C4)

Name	Value	Unit
Landfilling	19.5	kg
Transport distance	50	km
Capacity utilization	50	%

LCA: Results

DESC	RIPT	ION O	F THE	SYST	EM B	OUND	ARY	(X = IN	ICL	UDI	ED IN	LCA;	MNC) = M	OD	ULE N	OT DE	CL	ARED)								
PROE	DUCT S	TAGE	CONST ON PRO STA	OCESS				USE STA	GE				END OF LIFE STAGE						EFITS AND LOADS (OND THE SYSTEM JNDARIES								
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement		Replacement		Replacement		Replacement		Replacement		Refurbishment Operational energy use		Operational water use	De-construction	demolition	Transport	Waste processing	Disposal	Reuse-	Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	E	35	B6	B7	C 1		C2	C3	C4		D								
Х	Х	Х	Х	Х	MND	MND	MN	MND	Μ	ND	MND	MND	MN	D	Х	MND	Х		Х								
RESL	JLTS	OF TH	IE LCA	- EN	VIRON	MENT	AL I	MPAC1	r: 1	m ³	Miner	al Woo	ol 03	4-03	5												
			Param	eter				Unit		A	1-A3	A4		A5		C2	C4	Ļ	D								
		Glob	oal warmir	ng potenti	al			[kg CO ₂ -E	q.]	1:	5.70	1.06		3.73		0.06	0.3	1	-1.69								
			al of the s			layer	[g CFC11-			27E-8	4.86E-1		1.94E-9		2.95E-13	3.45E		-4.66E-10								
	Ac		n potential rophicatio					[kg SO ₂ -E			1E-1	2.80E-3		1.25E-3		1.81E-4	1.88		-2.40E-3 -2.51E-4								
Format	ion noter		pospheric			nical ovida				6.56E-4		3.85E-4 2.08E-4		4.26E-5 -5.60E-5	2.55		-2.51E-4 -2.79E-4										
TOITIat			potential					[kg Sb-Eq.] 9.00E-3		7.05E-8				4.28E-9	1.00		-2.79L-4 -2.51E-7										
			on potenti					[MJ]	1.]		7.00	14.60	<u> </u>	7.26		0.88	4.07		-23.90								
RESL							E: 1	m ^³ Min	era	I We	ool 03	4-035															
			Parar					Unit		1-A3		A4				C2	C4		D								
	Ren	ewable r	primary en	erav as e	enerav ca	rier		[MJ]	5	55.70	5.70 IND		IND			IND	IND		IND								
Re			energy re				n	[MJ]	-	37.30 IND		IND			IND	IND		IND									
			newable p					[MJ]		93.00		0.83		94		0.05	0.48		-3.21								
			e primary ([MJ]		53.00		IND	IND		IND		IND		IND								
			orimary er					[MJ]		0.00 53.00		IND 14.60		ID 94		IND 0.89	IND 4.22		IND -28.30								
	l otal use		renewable e of secon			sources		[MJ] [kg]		53.00 15.20		14.60 IND	-	94 31	_	0.89 IND	4.22 IND		-28.30 IND								
			renewable					[MJ]		0.00		0.00		00	-	0.00	0.00		0.00								
	ι		n-renewa			6		[MJ]		0.00		0.00		00		0.00	0.00		0.00								
		U	lse of net l	fresh wate	er			[m³]	1.	41E-1	2	.07E-3	8.3	1E-3	1.	.26E-4	8.60E	4	-5.00E-3								
			IE LCA ol 034		TPUT	FLOW	IS A	ND WA	STI	E C/	ATEG	ORIES															
			Parar					Unit	A	1-A3		A4	4	\5		C2	C4		D								
		Haz	ardous wa	aste disno	osed			[kg]	2	87E-5	; 1	11E-6	5.7	7E-7	6	.71E-8	9.63E	-8	-9.84E-9								
			azardous					[kg]		01E+0		23E-3		2E-1		46E-5	1.95E-		-8.80E-3								
			ioactive w					[kg]		99E-2	2 2	.09E-5		6E-4	_	27E-6	5.88E	-5	-1.73E-3								
			omponent					[kg]		IND		IND		ID		IND	IND		IND								
			laterials fo					[kg]		IND		IND		<u>ID</u>		IND	IND		IND								
			rials for er					[kg] [MJ]		IND IND		IND IND		1D 89	-	IND IND	IND 0.00		IND IND								
								[MJ]		IND		IND		.10	_	IND	0.00		IND								
L	Exported thermal energy							[]				1					0.00										

INTERPRETATION

USE OF RESOURCES

The primary energy demand from non-renewable resources is dominated by the production of mineral wool products (especially due to the energy consumption) and the packaging.

The renewable energy demand is dominated by the packaging (wood pallets), the binder (bio-based) and production (electricity mix).

ENVIRONMENTAL IMPACT

Every impacts category except the abiotic ADPe are dominated by the production. This is due to the consumption of energy (electricity and thermal energy) during the production of rock mineral wool products.

The **Abiotic Depletion Potential elements (ADPe)** is dominated by the raw material consumption (>95% mainly due to borax).

The **Abiotic Depletion Potential fossil (ADPf)** is dominated by the use of natural gas as energy carrier and the electricity consumption for the production (>50%). The plastics used for the packaging have also a non negligible impact.

The **Global Warming potential (GWP)** is dominated by the production, mostly due to energy consumption (>60%, gas and electricity). The binder (bio-based) has overall no impact. The raw materials have a 20% impact. The **Ozone Depletion Potential (ODP)** is mainly influenced by the production. The production is dominated by the electricity consumption which has a relevant impact on ODP because of cooling systems in power plants.

The **Acidification Potential** (**AP**) is also dominated by the production (>80%) due to the emissions related to the processes and the energy consumption. Mostly, the impact refers to emissions to air: sulphur dioxide, amonia and nitrogen oxides.

The **Eutrophication Potential (EP)** is significantly influenced by the production (>70%) due to emissions from the furnace, curing oven and electricity consumption.

The **Potential of Tropospheric Ozone Photochemical Oxidants (POCP)** is particularly dominated by the production, >80% (emissions in curing oven, electricity consumption). The glass veil also contributes to POCP. The results from the transport are negative due to the NO emissions; NO counteracts the POCP.

References

Institut Bauen und Umwelt

Institut Bauen und Umwelt e.V., Berlin(pub.): Generation of Environmental Product Declarations (EPDs);

General principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013/04 www.bau-umwelt.de

ISO 14025

DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804

EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

PCR Part A

Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requireme,nts in the Background Report. April 2013, www.bau-umwelt.de

IBU 2014 Part B

PCR -Part B: Requirements on the EPD for Mineral insulating materials (in german "Anforderungen an die EPD für Mineralische Dämmstoffe"), Version 1.3 Institut Bauen und Umwelt e.V., www.bau-umwelt.com, 07/2014

GaBi 6 2015

GaBi 6: Software and database for life cycle engineering. LBP, University of Stuttgart and PE INTERNATIONAL AG, Leinfelden-Echterdingen, 2015.

GaBi 6 2015B

GaBi 6: Documentation of GaBi6-Datasets for life cycle engineering. LBP University of Stuttgart and PE INTERNATIONAL AG, 2015. http://documentation.gabi-software.com/

DIN 4108-10

DIN 4108-00 (2004-09): Thermal insulation and energy economy in buildings - Part 10: Application-related requirements for thermal insulation materials - Factory made products

EN 13162

EN 13162:2012 Thermal insulation products for buildings - Factory made mineral wool (MW) products - Specification

EN 12667

EN 12667: 2001 Thermal performance of building materials and products - Determination of thermal resistance by means of guarded hot plate and heat flow meter methods - Products of high and medium thermal resistance

EN 1602

EN 1602: 2013 Thermal insulating products for building applications - Determination of the apparent density

EN 29053

EN 29053: 1993 Acoustics; materials for acoustical applications; determination of airflow resistance

EN 1609

EN 1609: 2013 Thermal insulating products for building applications - Determination of short term water absorption by partial immersion

EN 12087

EN 12087: 2013 Thermal insulating products for building applications - Determination of long term water absorption by immersion

EN 13501-1

EN 13501-1: 2009 Fire classification of construction products and building elements - Part 1: Classification using test data from reaction to fire tests

ISO 10456

ISO 10456: 2007 Building materials and products -Hygrothermal properties - Tabulated design values and procedures for determining declared and design thermal values

Regulation (EU) No 305/2011/

Regulation (EU) No 305/2011/ laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC.

Regulation (EC) No 765/2008

Regulation (EC) No 765/2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products and repealing Regulation (EEC) No 339/93

Zulassung Z-23. 15-1461

Zulassung Z-23. 15-1461 Building inspection approval issued by the Deutsches Institut für Bautechnik (DIBt), Berlin. Wärmedämmstoffe aus Mineralwolle (MW) nach DIN EN 13162:2009-02.

Institut Bauen und Umwelt e.V.	Publisher Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 3087748- 0 +49 (0)30 3087748- 29 info@bau-umwelt.com www.bau-umwelt.com
Institut Bauen und Umwelt e.V.	Programme holder Institut Bauen und Umwelt e.V. Panoramastr 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 - 3087748- 0 +49 (0)30 – 3087748 - 29 info@bau-umwelt.com www.bau-umwelt.com
thinkstep	Author of the Life Cycle Assessment Thinkstep Haupstrasse 111 70771 Leinfelden-Echterdingen Germany	Tel Fax Mail Web	+497113418170 +4971134181725 info@thinkstep.com www.thinkstep.com
CHEMICAL ENGINEERING	Université de Liège Allée du 6 Aout B6 4000 Sart-Tilman (Liège) Belgium	Tel Fax Mail Web	+3243663547 +3243664435 saicha.gerbinet@ulg.ac.be www.chimapp.ulg.ac.be
KNAUF INSULATION its time to save energy	Owner of the Declaration Knauf Insulation Jean-Pierre Pigeolet Rue E. Francqui 7 1435 Mont-Saint-Guibert Belgium	Tel Fax Mail M Web	+3210488458 +3210488474 sustainability@knaufinsulation.co www.knaufinsulation.com